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ABSTRACT 
 
A problem with gradient descent algorithms is their convergence to poorly performing local minima. Global 
search algorithms address this problem, but at the cost of greatly increased training times. This work looks at 
combining gradient descent with the global search technique of Simulated Annealing. Simulated Annealing is 
added to RPROP, a powerful gradient descent algorithm for training feedforward neural networks. The resulting 
algorithm, SARPROP, is shown not only to be able to escape local minima, but is also able to maintain, and 
often improve the training times of the RPROP algorithm. A further enhancement to SARPROP is the addition 
of a restart training phase that allows a more thorough search of the error surface.   
 
1 Introduction 
 
There are two traditional methods for training 
feedforward neural networks: gradient descent, which 
includes algorithms such as Back Propagation [10] 
and Conjugate Gradient methods [6], and global 
optimisation techniques such as Simulated Annealing 
(SA) and Genetic Algorithms. Both suffer from 
problems: gradient descent methods inherently 
converge to local minima that may produce poor 
solutions, and global optimisation is computationally 
expensive.  

The combination of gradient descent and some 
form of global search is the obvious solution to this 
dilemma. This work combines a quick and 
computationally cheap algorithm, RPROP, and SA, 
with the aims of maintaining quick convergence and 
reducing convergence to poor local minima. This 
algorithm, named SARPROP, is based on previous 
work [12], but has a number of extensions.  

SA methods are a well known technique in 
training artificial neural networks, and have been 
applied to the Back Propagation algorithm [2] with 
good results in terms of speed of convergence. Other 
algorithms exploring the combination of gradient 
descent and global search are [1,11]. 
 
2 RPROP 
 
There have been a number of refinements made to the 
BP algorithm [3,5] with the most successful in general 
being Resilient Back Propagation (RPROP) [8,9]. 
There are two major differences between BP and 
RPROP. First, RPROP modifies the size of the weight 
step taken adaptively and second, the mechanism for 
adaptation in RPROP does not take into account the 
magnitude of the gradient (dE/dwij) as seen by a 
particular weight, but only the sign of the gradient 

(positive or negative). This allows the step size to be 
adapted without having the size of the gradient 
interfere with the adaptation process [9]. In a number 
of previous BP variants, the learning parameter, h, 
has been varied adaptively [5]. Both the learning 
parameter and the magnitude of the gradient, 
however, effect the actual step size taken in these 
algorithms. The size of the gradient is unforeseeable, 
and hence it has the potential to disrupt the adaptation 
of the learning parameter. 

The RPROP algorithm works by modifying each 
weight by an amount Dij(t), termed the update value, 
in such a way as to decease the overall error. All 
update values are initialised to the value D0. The 
update value is modified in the following manner: if 
the current gradient (dE/dwij(t)) multiplied by the 
gradient of the previous step is positive (that is, the 
gradient direction has remained the same), then the 
update value is multiplied by a value h+ (which is 
greater than one). Similarly, if the gradient product is 
negative, the update value is multiplied by the value 
h- (which is less than one). The update value remains 
the same if the product equals zero. This results in the 
update value for each weight adaptively growing, or 
shrinking, as a result of the sign of the gradient seen 
by that weight. There are two limits placed on the 
update values: a maximum Dmax, and a minimum Dmin.  

The RPROP algorithm has a number of 
advantages. It is fast to converge compared to BP and 
a number of other BP variants, and its performance is 
relatively invariant to initial parameter selection [9]. It 
is also only slightly more computationally complex 
than BP.  

 
3 SARPROP 
 
While RPROP can be extremely fast in converging to 
a solution, it suffers from the same problem faced by 



all gradient descent based methods: it can often 
converge to poor local minima. SARPROP attempts 
to address this problem by using the method of 
Simulated Annealing. SA, in general, involves the 
addition of a random noise factor during weight 
updates. The amount of noise added is associated with 
a SA term, which decreases the effect of the noise as 
training progresses. The addition of noise allows the 
network to move in a direction which is not 
necessarily the direction of steepest descent. The 
benefit this provides is that it can help the network 
escape from local minima. Burton and Mpitsos [2] 
have shown that SA can help increase the speed of 
convergence of the BP algorithm, and conclude that 
noise “simply permits or facilitates greater access to 
such pathways that are not easily reached in the 
networks not containing noise”.  

 In SARPROP, noise is added to a weight when 
both the error gradient changes sign in successive 
epochs, and the magnitude of the update value is less 
than a SA term. The amount of noise added is 
proportional to the SA term. The reason for adding 
noise to the update value only when both the error 
gradient changes sign and the update value is below a 
given setting, is to minimise the disturbance to the 
normal adaptation of the update value. Following this 
scheme means that the update value is only modified 
by noise when it has a relatively small value 
(indicating a number of previous gradient crossings). 
This can allow the weight to jump out of local minima 
(Figure 1), while minimising the disturbance to the 
adaptation process. The amount of noise added 
decreases as the training continues. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: An example of a weight trajectory along an 
error surface, and the result of SARPROP’s noise 

addition. 
 

SARPROP uses SA not only on the noise added 
to the weight updates, but also on the amount of 
weight decay the network uses. SARPROP 
implements weight decay by imposing a penalty term 
onto the error function, which results in a 

modification to the error gradient. The weight decay 
term in SARPROP is set up such that small valued 
weights decay more rapidly than larger weights. This 
form of weight decay was found to produce much 
better convergence properties than the one used in an 
earlier version of SARPROP [12] which employed a 
weight decay rate proportional to the weight size. The 
weight decay term is associated with a SA term, 
which results in the influence of the weight decay 
decreasing as training proceeds. The SARPROP error 
gradient is shown below: 
  dE/dwij SARPROP = dE/dwij  -  0.01* wij/(1+wij2) * SA 
           where SA = 2-T*epoch and T = temperature 
The reason for adding a weight decay term to the error 
function is to constrain the weights to smaller values 
at the beginning of training. In effect this smoothes 
out the error surface, reducing the chance of the 
network getting stuck in small local minima. In 
addition, convergence may be speeded up since a 
smoother error surface reduces the chance of gradient 
crossings. Gradient crossings cause the update values 
to decrease, which may slow learning. The search is 
complemented by the simultaneous addition of noise 
to the weight updates.  

After these enhancements have been 
incorporated, the resulting SARPROP algorithm is 
shown in Figure 2, in which r is a random number 
between 0 and 1. The only parameter value requiring 
setting prior to training is the temperature parameter, 
T, a part of the SA term. 

It should be noted that there is still no guarantee 
that SARPROP will converge to a good local 
minimum, only that the likelihood of such is 
increased. In order to increase this chance further it is 
possible to use SARPROP in a restart mode. This is 
done by restarting training whenever SARPROP 
converges. The current weight values are used as the 
new initial weight values, so that any prior training 
knowledge is maintained. Since training is restarted, 
the SA terms are reset, and hence the error surface is 
once again greatly smoothed and a large noise value is 
reinitialised. This may allow the network to jump out 
from its current local minimum and perhaps converge 
to a better solution. This algorithm will be termed 
ReSARPROP.  

 A further advantage of ReSARPROP is that it 
solves the problem of selecting a good value for the 
temperature parameter. Normally SARPROP requires 
this parameter to be set prior to training, and the 
optimal value depends on the problem. Using 
ReSARPROP, the temperature can be initially set to 
give fast annealing. If a good solution has not been 
reached, when the network is restarted this 
temperature can be reset to allow for slower 
annealing. A good performing temperature schedule 
used for the restarts is the sequence: 0.050, 0.048, 
0.044, 0.036, 0.020, 0.010, 0.010, … (based on an 
exponential sequence with a minimum of 0.010). A 
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given training run is considered to have reached a 
local minimum after both a minimum training period, 
and the RMS error improves by less than 0.001 over a 
50 epoch period. A minimum training time is 
specified to allow the effect of the noise and decay to 
diminish sufficiently for convergence to occur. The 
minimum training time in epochs is given by the 
formula: 6/Temperature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: The SARPROP algorithm. 
 
4. Comparative Simulations 
 
To test the effectiveness of SARPROP and 
ReSARPROP, their performance was compared 
against that of RPROP on a number of standard 
benchmark problems. SARPROP uses the standard 
RPROP constant settings [9]: h+ = 1.2, h- = 0.5, Dmax = 
50, Dmin = 1x10-6. In addition, a constant value of 
0.0001 was added to the derivative of the sigmoid in 
order to overcome the ‘flat spot’ problem [3] for all 
algorithms. The initial update value, D0, was set to 0.1 
for all problems. The value chosen for D0 has been 
shown to be of little significance in regards to the 
performance of RPROP since it is quickly adapted 
[9]. All weights were initialised to random values in 
the range -0.7 to 0.7. A symmetric activation function 
(-0.5 to 0.5) was used. The temperature value used for 
SARPROP was chosen to maximise its performance.  

To compare RPROP, SARPROP, and 
ReSARPROP, each algorithm was used to train a 
network on a given problem. For each problem, all 
training attempts were repeated 50 times. A maximum 
number of training epochs was also selected, and 

training was halted if this number was reached. In this 
case the training was defined to be non-converging. In 
order to compare the algorithms it was decided to take 
three measurements: the average and median of the 
number of epochs required for training, and the 
number of non-converged training runs. For 
classification problems the 40-20-40 threshold and 
margin criterion was used [3]. In using the 40-20-40 
criterion, a class has been learnt correctly if the 
neuron’s output is in the correct upper or lower 40% 
of its output range. For regression problems, a RMS 
error value was specified to indicate convergence. The 
performance on the test sets was also measured where 
applicable, and the median value reported. 
 
4.1 Parity Data Sets 
 
The first series of comparisons were performed using 
the odd parity data sets: Parity 3 to 8. The network 
structures chosen for each problem were: 3-3-1 
(Parity 3); 4-6-1 (Parity 4); 5-7-1 (Parity 5); 6-9-1 
(Parity 6); 7-11-1 (Parity 7); 8-16-1 (Parity 8). The 
maximum training time was set at 2000 epochs. 
Training was halted when the 40-20-40 classification 
criterion was satisfied on the training set. The 
temperature parameter for SARPROP was set to 
0.010. The Parity results are displayed in Table 1. 
 
4.2 Iris Data Set 
 
Comparisons were next performed on Fisher’s classic 
Iris data set which classifies irises into three classes. 
The Iris data set was obtained from the UCI machine 
learning database [7], and consists of 120 training 
patterns and 30 test patterns selected at random. The 
maximum training time was set at 2000 epochs. 
Training was halted when the 40-20-40 classification 
criterion was met, at which point the percentage 
correctly classified on the test set was measured. The 
network structure used was 4-2-3. The temperature 
parameter for SARPROP was set to 0.050. The Iris 
results are displayed in Table 2. 
 
4.3 Regression Data Sets 
 
Regression simulations were next performed on the 
complex interaction function, described in detail in 
[4], and shown below:  

 
The set up of training and test data follows the 

method of [4]. For each function two sets of training 
data were created, one noise-free and one noisy, using 
225 random values. The noisy data was created by 
adding independent and identically distributed 
Gaussian noise, with zero mean and unit variance. For 
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"i,j: Dij(t) = D0 
"i,j:  dE/dwij(t-1) = 0 
Repeat 

Compute SARPROP Gradient dE/dw(t) 

For all weights and biases 
if  (dE/dwij(t-1) * dE/dwij(t) > 0) then 

Dij(t) = minimum (Dij(t-1) * h+, Dmax) 
          Dwij(t) = - sign (dE/dwij(t)) * Dij(t) 
          wij(t+1) = wij(t) + Dwij(t) 
          dE/dwij(t-1) = dE/dwij(t) 

else if  (dE/dwij(t-1) * dE/dwij(t) < 0) then 
          if  (Dij(t-1) < 0.4* SA2) then 

        Dij(t) = Dij(t-1) * h- + 0.8*r*SA2 

          else  
         Dij(t) = Dij(t-1) * h- 

                Dij(t) = maximum (Dij(t), Dmin) 
          dE/dwij(t-1) = 0 

else if  (dE/dwij(t-1) * dE/dwij(t) =0) then 
          Dwij(t) = - sign (dE/dwij(t)) * Dij(t) 
          wij(t+1) = wij(t) + Dwij(t) 
          dE/dwij(t-1) = dE/dwij(t) 
Until (converged) 
 



each function an independent test set of size 2500 was 
generated on a regularly spaced grid [0,1]2. The 
network structure used was 2-14-1. 

 The maximum training time was set at 10000 
epochs. Training was continued until RMS errors of 
0.15 and 0.28 were reached for the noise-free and 
noisy data sets respectively, at which point the 
performance on the test set was measured. The 
measure used was the Fraction of Variance 
Unexplained (FVU) [4], which is proportional to the 
total sum of squares error. The temperature parameter 
for SARPROP was set to 0.010. The results are shown 
in Tables 3 and 4 for the noise-free and noisy data sets 
respectively. 
 

 TRAINING (EPOCHS)  
 Avg. Median NonCvg 

Par3    
RP 60.12 18.5 1 
SP 24.22 24 0 

ReSP 46.88 21 0 
Par4    
RP 734.34 172 16 
SP 60.32 44.5 0 

ReSP 136.24 66 0 
Par5    
RP 448.84 48 8 
SP 58.88 42 0 

ReSP 155.3 56.5 0 
Par6    
RP 1313.84 2000 31 
SP 127.96 87 0 

ReSP 232.02 216 0 
Par7    
RP 912.74 485 18 
SP 180.82 102 1 

ReSP 200.06 99.5 0 
Par8    
RP 1509.6 2000 34 
SP 471.8 241.5 6 

ReSP 415.7 332.5 0 
Table 1: Parity results. 

 
 TRAINING 

(EPOCHS) 
  

 Avg. Median NonCvg Test% 
RP 569.12 396.5 5 83.33 
SP 352.66 283.5 0 86.67 

ReSP 352.66 283.5 0 86.67 
Table 2: Iris results 

 
5. Discussion 
 
The results on all benchmarks demonstrate the 
effectiveness of the combination of noise and weight 

decay in allowing SARPROP to escape from local 
minima. This is especially apparent in the Parity 
results, where SARPROP is very successful at 
converging to a solution, while RPROP often fails to 
do so. For example, on the Parity 6 data set RPROP 
failed to converge 62% of the time, compared with 
SAPRROP which converged in every run. In addition, 
for the data sets which have a test set, SARPROP can 
be seen to produce better generalisation results than 
RPROP. 
 

 TRAINING 
(EPOCHS) 

  

 Avg. Median NonCvg FVU 
RP 9793.96 10000 48 0.052 
SP 8530.22 10000 33 0.040 

ReSP 7193.12 6934.5 8 0.038 
Table 3: Complex interaction function results – noise 

free 
 

 TRAINING 
(EPOCHS) 

  

 Avg. Median NonCvg FVU 
RP 7230.18 9800.5 24 0.070 
SP 5708.28 5086.5 12 0.058 

ReSP 5413.32 5508.5 3 0.066 
Table 4: Complex interaction function results – noisy 
 

ReSARPROP produces even better convergence 
results than SARPROP, especially on the more 
difficult problems such as Parity 8 and the regression 
data sets. While ReSARPROP is able to converge 
more frequently than SARPROP, in general it is more 
expensive computationally due to the fact that it may 
perform a number of training restarts. Again, 
generalisation improvements are seen for 
ReSARPROP over RPROP. 

The combination of noise and weight decay can 
be seen to be successful in allowing the SARPROP 
networks to converge to good local minima. 
Importantly this combination does not increase 
training times, as is often the case with SA methods. 
In fact, decreases in training times compared to 
RPROP were generally observed. These results 
support Burton and Mpitsos’ [2] hypothesis that the 
addition of noise can allow access to paths along the 
error surface which allow more rapid convergence. 

The reasons for SARPROP and ReSARPROP’s 
improved generalisation results can be attributed to 
their use of weight decay, a form of regularisation. 
Weight decay restricts the type of functionality which 
the network can produce. It favours networks 
producing smoother functions, which are more likely 
to represent the underlying functions of real world 
data.  

The use of SA and weight decay is similar in 
purpose to the technique of convolution function 



smoothing [11]. In this technique the error function is 
convoluted with a smoothing function in order to 
smooth the error surface, thereby removing many 
poor local minima. The amount of smoothing is 
reduced as training continues.  A similar function is 
performed through the use of weight decay and SA. 

One disadvantage of the SARPROP algorithm is 
its reliance on the temperature parameter. This 
parameter must be set prior to training, and its optimal 
value is dependent on the data set. ReSARPROP 
overcomes this problem by automatically selecting a 
schedule of temperature values. This not only 
removes the need to set any parameters for 
ReSARPROP, but also improves the convergence 
performance of the algorithm. In addition, 
ReSARPROP can easily store the weight values each 
time it converges to a solution before training is 
restarted. This ensures that the best performing 
solutions are not lost, but can be reinstalled at any 
point. 
 
6. Conclusion 
 
A Simulated Annealing addition to the RPROP 
algorithm, SARPROP, has been proposed. The 
success of the combination of noise and weight decay 
in increasing both convergence speed and the chance 
of convergence has been demonstrated on a number of 
benchmark problems. Combining SARPROP with a 
restart training phase improves convergence and 
provides the additional benefit of removing any 
parameters needing to be set prior to training. 
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