
Combining Simulated Annealing and Gradient Descent for Improved
Convergence in Neural Networks

N.K. Treadgold and T.D. Gedeon

Department of Information Engineering
School of Computer Science & Engineering, The University of New South Wales

{ nickt | tom }@cse.unsw.edu.au

ABSTRACT

A problem with gradient descent algorithms is their convergence to poorly performing local minima. Global
search algorithms address this problem, but at the cost of greatly increased training times. This work looks at
combining gradient descent with the global search technique of Simulated Annealing. Simulated Annealing is
added to RPROP, a powerful gradient descent algorithm for training feedforward neural networks. The resulting
algorithm, SARPROP, is shown not only to be able to escape local minima, but is also able to maintain, and
often improve the training times of the RPROP algorithm. A further enhancement to SARPROP is the addition
of a restart training phase that allows a more thorough search of the error surface.

1 Introduction

There are two traditional methods for training
feedforward neural networks: gradient descent, which
includes algorithms such as Back Propagation [10]
and Conjugate Gradient methods [6], and global
optimisation techniques such as Simulated Annealing
(SA) and Genetic Algorithms. Both suffer from
problems: gradient descent methods inherently
converge to local minima that may produce poor
solutions, and global optimisation is computationally
expensive.

The combination of gradient descent and some
form of global search is the obvious solution to this
dilemma. This work combines a quick and
computationally cheap algorithm, RPROP, and SA,
with the aims of maintaining quick convergence and
reducing convergence to poor local minima. This
algorithm, named SARPROP, is based on previous
work [12], but has a number of extensions.

SA methods are a well known technique in
training artificial neural networks, and have been
applied to the Back Propagation algorithm [2] with
good results in terms of speed of convergence. Other
algorithms exploring the combination of gradient
descent and global search are [1,11].

2 RPROP

There have been a number of refinements made to the
BP algorithm [3,5] with the most successful in general
being Resilient Back Propagation (RPROP) [8,9].
There are two major differences between BP and
RPROP. First, RPROP modifies the size of the weight
step taken adaptively and second, the mechanism for
adaptation in RPROP does not take into account the
magnitude of the gradient (dE/dwij) as seen by a
particular weight, but only the sign of the gradient

(positive or negative). This allows the step size to be
adapted without having the size of the gradient
interfere with the adaptation process [9]. In a number
of previous BP variants, the learning parameter, h,
has been varied adaptively [5]. Both the learning
parameter and the magnitude of the gradient,
however, effect the actual step size taken in these
algorithms. The size of the gradient is unforeseeable,
and hence it has the potential to disrupt the adaptation
of the learning parameter.

The RPROP algorithm works by modifying each
weight by an amount Dij(t), termed the update value,
in such a way as to decease the overall error. All
update values are initialised to the value D0. The
update value is modified in the following manner: if
the current gradient (dE/dwij(t)) multiplied by the
gradient of the previous step is positive (that is, the
gradient direction has remained the same), then the
update value is multiplied by a value h+ (which is
greater than one). Similarly, if the gradient product is
negative, the update value is multiplied by the value
h- (which is less than one). The update value remains
the same if the product equals zero. This results in the
update value for each weight adaptively growing, or
shrinking, as a result of the sign of the gradient seen
by that weight. There are two limits placed on the
update values: a maximum Dmax, and a minimum Dmin.

The RPROP algorithm has a number of
advantages. It is fast to converge compared to BP and
a number of other BP variants, and its performance is
relatively invariant to initial parameter selection [9]. It
is also only slightly more computationally complex
than BP.

3 SARPROP

While RPROP can be extremely fast in converging to
a solution, it suffers from the same problem faced by

all gradient descent based methods: it can often
converge to poor local minima. SARPROP attempts
to address this problem by using the method of
Simulated Annealing. SA, in general, involves the
addition of a random noise factor during weight
updates. The amount of noise added is associated with
a SA term, which decreases the effect of the noise as
training progresses. The addition of noise allows the
network to move in a direction which is not
necessarily the direction of steepest descent. The
benefit this provides is that it can help the network
escape from local minima. Burton and Mpitsos [2]
have shown that SA can help increase the speed of
convergence of the BP algorithm, and conclude that
noise “simply permits or facilitates greater access to
such pathways that are not easily reached in the
networks not containing noise”.

 In SARPROP, noise is added to a weight when
both the error gradient changes sign in successive
epochs, and the magnitude of the update value is less
than a SA term. The amount of noise added is
proportional to the SA term. The reason for adding
noise to the update value only when both the error
gradient changes sign and the update value is below a
given setting, is to minimise the disturbance to the
normal adaptation of the update value. Following this
scheme means that the update value is only modified
by noise when it has a relatively small value
(indicating a number of previous gradient crossings).
This can allow the weight to jump out of local minima
(Figure 1), while minimising the disturbance to the
adaptation process. The amount of noise added
decreases as the training continues.

Fig. 1: An example of a weight trajectory along an
error surface, and the result of SARPROP’s noise

addition.

SARPROP uses SA not only on the noise added
to the weight updates, but also on the amount of
weight decay the network uses. SARPROP
implements weight decay by imposing a penalty term
onto the error function, which results in a

modification to the error gradient. The weight decay
term in SARPROP is set up such that small valued
weights decay more rapidly than larger weights. This
form of weight decay was found to produce much
better convergence properties than the one used in an
earlier version of SARPROP [12] which employed a
weight decay rate proportional to the weight size. The
weight decay term is associated with a SA term,
which results in the influence of the weight decay
decreasing as training proceeds. The SARPROP error
gradient is shown below:
 dE/dwij SARPROP = dE/dwij - 0.01* wij/(1+wij2) * SA
 where SA = 2-T*epoch and T = temperature
The reason for adding a weight decay term to the error
function is to constrain the weights to smaller values
at the beginning of training. In effect this smoothes
out the error surface, reducing the chance of the
network getting stuck in small local minima. In
addition, convergence may be speeded up since a
smoother error surface reduces the chance of gradient
crossings. Gradient crossings cause the update values
to decrease, which may slow learning. The search is
complemented by the simultaneous addition of noise
to the weight updates.

After these enhancements have been
incorporated, the resulting SARPROP algorithm is
shown in Figure 2, in which r is a random number
between 0 and 1. The only parameter value requiring
setting prior to training is the temperature parameter,
T, a part of the SA term.

It should be noted that there is still no guarantee
that SARPROP will converge to a good local
minimum, only that the likelihood of such is
increased. In order to increase this chance further it is
possible to use SARPROP in a restart mode. This is
done by restarting training whenever SARPROP
converges. The current weight values are used as the
new initial weight values, so that any prior training
knowledge is maintained. Since training is restarted,
the SA terms are reset, and hence the error surface is
once again greatly smoothed and a large noise value is
reinitialised. This may allow the network to jump out
from its current local minimum and perhaps converge
to a better solution. This algorithm will be termed
ReSARPROP.

 A further advantage of ReSARPROP is that it
solves the problem of selecting a good value for the
temperature parameter. Normally SARPROP requires
this parameter to be set prior to training, and the
optimal value depends on the problem. Using
ReSARPROP, the temperature can be initially set to
give fast annealing. If a good solution has not been
reached, when the network is restarted this
temperature can be reset to allow for slower
annealing. A good performing temperature schedule
used for the restarts is the sequence: 0.050, 0.048,
0.044, 0.036, 0.020, 0.010, 0.010, … (based on an
exponential sequence with a minimum of 0.010). A

wij

Noise
added at
this point

Weight
trajectory
along the
error
surface

Error(wij)

given training run is considered to have reached a
local minimum after both a minimum training period,
and the RMS error improves by less than 0.001 over a
50 epoch period. A minimum training time is
specified to allow the effect of the noise and decay to
diminish sufficiently for convergence to occur. The
minimum training time in epochs is given by the
formula: 6/Temperature.

Fig. 2: The SARPROP algorithm.

4. Comparative Simulations

To test the effectiveness of SARPROP and
ReSARPROP, their performance was compared
against that of RPROP on a number of standard
benchmark problems. SARPROP uses the standard
RPROP constant settings [9]: h+ = 1.2, h- = 0.5, Dmax =
50, Dmin = 1x10-6. In addition, a constant value of
0.0001 was added to the derivative of the sigmoid in
order to overcome the ‘flat spot’ problem [3] for all
algorithms. The initial update value, D0, was set to 0.1
for all problems. The value chosen for D0 has been
shown to be of little significance in regards to the
performance of RPROP since it is quickly adapted
[9]. All weights were initialised to random values in
the range -0.7 to 0.7. A symmetric activation function
(-0.5 to 0.5) was used. The temperature value used for
SARPROP was chosen to maximise its performance.

To compare RPROP, SARPROP, and
ReSARPROP, each algorithm was used to train a
network on a given problem. For each problem, all
training attempts were repeated 50 times. A maximum
number of training epochs was also selected, and

training was halted if this number was reached. In this
case the training was defined to be non-converging. In
order to compare the algorithms it was decided to take
three measurements: the average and median of the
number of epochs required for training, and the
number of non-converged training runs. For
classification problems the 40-20-40 threshold and
margin criterion was used [3]. In using the 40-20-40
criterion, a class has been learnt correctly if the
neuron’s output is in the correct upper or lower 40%
of its output range. For regression problems, a RMS
error value was specified to indicate convergence. The
performance on the test sets was also measured where
applicable, and the median value reported.

4.1 Parity Data Sets

The first series of comparisons were performed using
the odd parity data sets: Parity 3 to 8. The network
structures chosen for each problem were: 3-3-1
(Parity 3); 4-6-1 (Parity 4); 5-7-1 (Parity 5); 6-9-1
(Parity 6); 7-11-1 (Parity 7); 8-16-1 (Parity 8). The
maximum training time was set at 2000 epochs.
Training was halted when the 40-20-40 classification
criterion was satisfied on the training set. The
temperature parameter for SARPROP was set to
0.010. The Parity results are displayed in Table 1.

4.2 Iris Data Set

Comparisons were next performed on Fisher’s classic
Iris data set which classifies irises into three classes.
The Iris data set was obtained from the UCI machine
learning database [7], and consists of 120 training
patterns and 30 test patterns selected at random. The
maximum training time was set at 2000 epochs.
Training was halted when the 40-20-40 classification
criterion was met, at which point the percentage
correctly classified on the test set was measured. The
network structure used was 4-2-3. The temperature
parameter for SARPROP was set to 0.050. The Iris
results are displayed in Table 2.

4.3 Regression Data Sets

Regression simulations were next performed on the
complex interaction function, described in detail in
[4], and shown below:

The set up of training and test data follows the

method of [4]. For each function two sets of training
data were created, one noise-free and one noisy, using
225 random values. The noisy data was created by
adding independent and identically distributed
Gaussian noise, with zero mean and unit variance. For

)).7sin())6.0(13sin(

35.1(9.1),(

2
2

1

21

21 xexe
xxf

xx --

+=

"i,j: Dij(t) = D0
"i,j: dE/dwij(t-1) = 0
Repeat

Compute SARPROP Gradient dE/dw(t)

For all weights and biases
if (dE/dwij(t-1) * dE/dwij(t) > 0) then

Dij(t) = minimum (Dij(t-1) * h+, Dmax)
 Dwij(t) = - sign (dE/dwij(t)) * Dij(t)
 wij(t+1) = wij(t) + Dwij(t)
 dE/dwij(t-1) = dE/dwij(t)

else if (dE/dwij(t-1) * dE/dwij(t) < 0) then
 if (Dij(t-1) < 0.4* SA2) then

 Dij(t) = Dij(t-1) * h- + 0.8*r*SA2

 else
 Dij(t) = Dij(t-1) * h-

 Dij(t) = maximum (Dij(t), Dmin)
 dE/dwij(t-1) = 0

else if (dE/dwij(t-1) * dE/dwij(t) =0) then
 Dwij(t) = - sign (dE/dwij(t)) * Dij(t)
 wij(t+1) = wij(t) + Dwij(t)
 dE/dwij(t-1) = dE/dwij(t)
Until (converged)

each function an independent test set of size 2500 was
generated on a regularly spaced grid [0,1]2. The
network structure used was 2-14-1.

 The maximum training time was set at 10000
epochs. Training was continued until RMS errors of
0.15 and 0.28 were reached for the noise-free and
noisy data sets respectively, at which point the
performance on the test set was measured. The
measure used was the Fraction of Variance
Unexplained (FVU) [4], which is proportional to the
total sum of squares error. The temperature parameter
for SARPROP was set to 0.010. The results are shown
in Tables 3 and 4 for the noise-free and noisy data sets
respectively.

 TRAINING (EPOCHS)
 Avg. Median NonCvg

Par3
RP 60.12 18.5 1
SP 24.22 24 0

ReSP 46.88 21 0
Par4
RP 734.34 172 16
SP 60.32 44.5 0

ReSP 136.24 66 0
Par5
RP 448.84 48 8
SP 58.88 42 0

ReSP 155.3 56.5 0
Par6
RP 1313.84 2000 31
SP 127.96 87 0

ReSP 232.02 216 0
Par7
RP 912.74 485 18
SP 180.82 102 1

ReSP 200.06 99.5 0
Par8
RP 1509.6 2000 34
SP 471.8 241.5 6

ReSP 415.7 332.5 0
Table 1: Parity results.

 TRAINING

(EPOCHS)

 Avg. Median NonCvg Test%
RP 569.12 396.5 5 83.33
SP 352.66 283.5 0 86.67

ReSP 352.66 283.5 0 86.67
Table 2: Iris results

5. Discussion

The results on all benchmarks demonstrate the
effectiveness of the combination of noise and weight

decay in allowing SARPROP to escape from local
minima. This is especially apparent in the Parity
results, where SARPROP is very successful at
converging to a solution, while RPROP often fails to
do so. For example, on the Parity 6 data set RPROP
failed to converge 62% of the time, compared with
SAPRROP which converged in every run. In addition,
for the data sets which have a test set, SARPROP can
be seen to produce better generalisation results than
RPROP.

 TRAINING
(EPOCHS)

 Avg. Median NonCvg FVU
RP 9793.96 10000 48 0.052
SP 8530.22 10000 33 0.040

ReSP 7193.12 6934.5 8 0.038
Table 3: Complex interaction function results – noise

free

 TRAINING
(EPOCHS)

 Avg. Median NonCvg FVU
RP 7230.18 9800.5 24 0.070
SP 5708.28 5086.5 12 0.058

ReSP 5413.32 5508.5 3 0.066
Table 4: Complex interaction function results – noisy

ReSARPROP produces even better convergence
results than SARPROP, especially on the more
difficult problems such as Parity 8 and the regression
data sets. While ReSARPROP is able to converge
more frequently than SARPROP, in general it is more
expensive computationally due to the fact that it may
perform a number of training restarts. Again,
generalisation improvements are seen for
ReSARPROP over RPROP.

The combination of noise and weight decay can
be seen to be successful in allowing the SARPROP
networks to converge to good local minima.
Importantly this combination does not increase
training times, as is often the case with SA methods.
In fact, decreases in training times compared to
RPROP were generally observed. These results
support Burton and Mpitsos’ [2] hypothesis that the
addition of noise can allow access to paths along the
error surface which allow more rapid convergence.

The reasons for SARPROP and ReSARPROP’s
improved generalisation results can be attributed to
their use of weight decay, a form of regularisation.
Weight decay restricts the type of functionality which
the network can produce. It favours networks
producing smoother functions, which are more likely
to represent the underlying functions of real world
data.

The use of SA and weight decay is similar in
purpose to the technique of convolution function

smoothing [11]. In this technique the error function is
convoluted with a smoothing function in order to
smooth the error surface, thereby removing many
poor local minima. The amount of smoothing is
reduced as training continues. A similar function is
performed through the use of weight decay and SA.

One disadvantage of the SARPROP algorithm is
its reliance on the temperature parameter. This
parameter must be set prior to training, and its optimal
value is dependent on the data set. ReSARPROP
overcomes this problem by automatically selecting a
schedule of temperature values. This not only
removes the need to set any parameters for
ReSARPROP, but also improves the convergence
performance of the algorithm. In addition,
ReSARPROP can easily store the weight values each
time it converges to a solution before training is
restarted. This ensures that the best performing
solutions are not lost, but can be reinstalled at any
point.

6. Conclusion

A Simulated Annealing addition to the RPROP
algorithm, SARPROP, has been proposed. The
success of the combination of noise and weight decay
in increasing both convergence speed and the chance
of convergence has been demonstrated on a number of
benchmark problems. Combining SARPROP with a
restart training phase improves convergence and
provides the additional benefit of removing any
parameters needing to be set prior to training.

References

[1] N. Baba, Y. Mogami, M. Kohzaki, Y. Shiraishi,

and Y. Yoshida, “A Hybrid Algorithm for
Finding the Global Minimum of Error Function
of Neural Networks and Its Applications,”
Neural Networks, vol. 7, pp. 1253-1265, 1994.

[2] R.M Burton and G.J. Mpitsos, “Event
Dependent Control of Noise Enhances Learning
in Neural Networks,” Neural Networks, vol. 5,
pp. 627-637, 1992.

[3] S.E. Fahlman, “An Empirical Study of Learning
Speed in Back-Propagation Networks”, CMU-
CS-88-162, Technical Report, Department of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, 1988.

[4] J. Hwang, S. Lay, R. Maechler, and D. Martin,
“Regression Modeling in Back-Propagation and
Projection Pursuit Learning,” IEEE Trans.
Neural Networks Vol. 5, pp. 342-353, 1994.

[5] R.A. Jacobs, “Increased Rates of Convergence
Through Learning Rate Adaption,” Neural
Networks, vol. 1, pp. 295-307, 1988.

[6] M.F. Moller, “A Scaled Conjugate Gradient
Algorithm for Fast Supervised Learning,”
Neural Networks, vol. 6, pp. 525-533, 1993.

[7] P.M. Murphy and D.W. Aha, UCI Repository of
machine learning databases, Irvine, CA:
University of California, Department of
Information and Computer Science, 1994.

[8] M. Riedmiller, “Rprop - Description and
Implementation Details,” Technical Report,
University of Karlsruhe, 1994.

[9] M.Riedmiller and H. Braun, “A Direct Adaptive
Method for Faster Backpropagation Learning:
The RPROP Algorithm,” Proc. of the ICNN 93,
San Francisco, pp. 586-591, 1993.

[10] D.E. Rumelhart, G.E. Hinton, and R.J. Williams,
Learning internal representations by error
propagation. In: Rumelhart, D.E. and
McClelland, J.L., (Ed.) Parallel distributed
processing: Explorations in the microstructure
of cognition. Vol 1. Foundations, Cambridge,
MA: MIT Press, pp. 318-362, 1986.

[11] M.A. Styblinski and T.S. Tang, “Experiments in

Nonconvex Optimisation: Stochastic
Approximation with Function Smoothing and
Simulated Annealing,” Neural Networks, vol. 3,
pp. 467-483, 1990.

[12] N.K. Treadgold and T.D. Gedeon, “A Simulated
Annealing Enhancement to Resilient
Backpropagation,” Proc. Int. Panel Conf. Soft
and Intelligent Computing, Budapest, pp. 289-
293, 1996.

